Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Observation of two-magnon bound states in the spin 1/2 ladders of $La_{14-x}Ca_xCu_{24}O_{41}$ M. Grüninger¹, M. Windt¹, T. Nunner², C. Knetter³, K. Schmidt³, G.S. Uhrig³, T. Kopp², A. Freimuth¹, U. Ammerahl¹, B. Büchner⁴, A. Revcolevschi⁵ - ¹ II. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany - ² Experimentalphysik VI, Universität Augsburg, 86135 Augsburg, Germany - ³ Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany - ⁴ II. Physikalisches Institut, RWTH-Aachen, 52056 Aachen, Germany - ⁵ Laboratoire de Chimie des Solides, Université Paris-Sud, 91405 Orsay, France Phonon-assisted two-magnon absorption is studied in the spin 1/2 two-leg ladders of La_{14-x}Ca_xCu₂₄O₄₁ (x=9 and 10). We present optical conductivity data for $E \parallel c$ (legs) and $E \parallel a$ (rungs) between T=4 K and 500 K. Three prominent features are observed: Two peaks at about 2150 and 2800 cm⁻¹ reflect maxima in the density of states of the strongly dispersing two-magnon singlet bound state, and a broad peak at ≈ 4000 cm⁻¹ is identified with the two-magnon continuum. Two different theoretical approaches are presented, namely Jordan-Wigner fermions and an optimized perturbation expansion using the flow equation method. Both describe the data very well. We find exchange constants of $J_{\parallel} \approx J_{\perp} \approx 1050$ cm⁻¹ and exclude the often proposed ratio $J_{\perp}/J_{\parallel} \approx 1/2$. Calculations studying the influence of a finite ring exchange are under progress. We find an intriguing similarity between the high-energy magnetic absorption of the undoped 2D cuprates and the two-magnon continuum of the ladders, which supports the interpretation of the former in terms of strong quantum fluctuations and confirms the failure of spin-wave theory to describe the high-energy short-wavelength excitations of the 2D cuprates.